Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
1.
Cochrane Database Syst Rev ; 6: CD013881, 2023 06 01.
Article in English | MEDLINE | ID: covidwho-20235999

ABSTRACT

BACKGROUND: It has been reported that people with COVID-19 and pre-existing autoantibodies against type I interferons are likely to develop an inflammatory cytokine storm responsible for severe respiratory symptoms. Since interleukin 6 (IL-6) is one of the cytokines released during this inflammatory process, IL-6 blocking agents have been used for treating people with severe COVID-19. OBJECTIVES: To update the evidence on the effectiveness and safety of IL-6 blocking agents compared to standard care alone or to a placebo for people with COVID-19. SEARCH METHODS: We searched the World Health Organization (WHO) International Clinical Trials Registry Platform, the Living OVerview of Evidence (L·OVE) platform, and the Cochrane COVID-19 Study Register to identify studies on 7 June 2022. SELECTION CRITERIA: We included randomized controlled trials (RCTs) evaluating IL-6 blocking agents compared to standard care alone or to placebo for people with COVID-19, regardless of disease severity. DATA COLLECTION AND ANALYSIS: Pairs of researchers independently conducted study selection, extracted data and assessed risk of bias. We assessed the certainty of evidence using the GRADE approach for all critical and important outcomes. In this update we amended our protocol to update the methods used for grading evidence by establishing minimal important differences for the critical outcomes. MAIN RESULTS: This update includes 22 additional trials, for a total of 32 trials including 12,160 randomized participants all hospitalized for COVID-19 disease. We identified a further 17 registered RCTs evaluating IL-6 blocking agents without results available as of 7 June 2022.  The mean age range varied from 56 to 75 years; 66.2% (8051/12,160) of enrolled participants were men. One-third (11/32) of included trials were placebo-controlled. Twenty-two were published in peer-reviewed journals, three were reported as preprints, two trials had results posted only on registries, and results from five trials were retrieved from another meta-analysis. Eight were funded by pharmaceutical companies.  Twenty-six included studies were multicenter trials; four were multinational and 22 took place in single countries. Recruitment of participants occurred between February 2020 and June 2021, with a mean enrollment duration of 21 weeks (range 1 to 54 weeks). Nineteen trials (60%) had a follow-up of 60 days or more. Disease severity ranged from mild to critical disease. The proportion of participants who were intubated at study inclusion also varied from 5% to 95%. Only six trials reported vaccination status; there were no vaccinated participants included in these trials, and 17 trials were conducted before vaccination was rolled out. We assessed a total of six treatments, each compared to placebo or standard care. Twenty trials assessed tocilizumab, nine assessed sarilumab, and two assessed clazakizumab. Only one trial was included for each of the other IL-6 blocking agents (siltuximab, olokizumab, and levilimab). Two trials assessed more than one treatment. Efficacy and safety of tocilizumab and sarilumab compared to standard care or placebo for treating COVID-19 At day (D) 28, tocilizumab and sarilumab probably result in little or no increase in clinical improvement (tocilizumab: risk ratio (RR) 1.05, 95% confidence interval (CI) 1.00 to 1.11; 15 RCTs, 6116 participants; moderate-certainty evidence; sarilumab: RR 0.99, 95% CI 0.94 to 1.05; 7 RCTs, 2425 participants; moderate-certainty evidence). For clinical improvement at ≥ D60, the certainty of evidence is very low for both tocilizumab (RR 1.10, 95% CI 0.81 to 1.48; 1 RCT, 97 participants; very low-certainty evidence) and sarilumab (RR 1.22, 95% CI 0.91 to 1.63; 2 RCTs, 239 participants; very low-certainty evidence). The effect of tocilizumab on the proportion of participants with a WHO Clinical Progression Score (WHO-CPS) of level 7 or above remains uncertain at D28 (RR 0.90, 95% CI 0.72 to 1.12; 13 RCTs, 2117 participants; low-certainty evidence) and that for sarilumab very uncertain (RR 1.10, 95% CI 0.90 to 1.33; 5 RCTs, 886 participants; very low-certainty evidence). Tocilizumab reduces all cause-mortality at D28 compared to standard care/placebo (RR 0.88, 95% CI 0.81 to 0.94; 18 RCTs, 7428 participants; high-certainty evidence). The evidence about the effect of sarilumab on this outcome is very uncertain (RR 1.06, 95% CI 0.86 to 1.30; 9 RCTs, 3305 participants; very low-certainty evidence). The evidence is uncertain for all cause-mortality at ≥ D60 for tocilizumab (RR 0.91, 95% CI 0.80 to 1.04; 9 RCTs, 2775 participants; low-certainty evidence) and very uncertain for sarilumab (RR 0.95, 95% CI 0.84 to 1.07; 6 RCTs, 3379 participants; very low-certainty evidence). Tocilizumab probably results in little to no difference in the risk of adverse events (RR 1.03, 95% CI 0.95 to 1.12; 9 RCTs, 1811 participants; moderate-certainty evidence). The evidence about adverse events for sarilumab is uncertain (RR 1.12, 95% CI 0.97 to 1.28; 4 RCT, 860 participants; low-certainty evidence).  The evidence about serious adverse events is very uncertain for tocilizumab (RR 0.93, 95% CI 0.81 to 1.07; 16 RCTs; 2974 participants; very low-certainty evidence) and uncertain for sarilumab (RR 1.09, 95% CI 0.97 to 1.21; 6 RCTs; 2936 participants; low-certainty evidence). Efficacy and safety of clazakizumab, olokizumab, siltuximab and levilimab compared to standard care or placebo for treating COVID-19 The evidence about the effects of clazakizumab, olokizumab, siltuximab, and levilimab comes from only one or two studies for each blocking agent, and is uncertain or very uncertain. AUTHORS' CONCLUSIONS: In hospitalized people with COVID-19, results show a beneficial effect of tocilizumab on all-cause mortality in the short term and probably little or no difference in the risk of adverse events compared to standard care alone or placebo. Nevertheless, both tocilizumab and sarilumab probably result in little or no increase in clinical improvement at D28. Evidence for an effect of sarilumab and the other IL-6 blocking agents on critical outcomes is uncertain or very uncertain. Most of the trials included in our review were done before the waves of different variants of concern and before vaccination was rolled out on a large scale. An additional 17 RCTs of IL-6 blocking agents are currently registered with no results yet reported. The number of pending studies and the number of participants planned is low. Consequently, we will not publish further updates of this review.


Subject(s)
COVID-19 Drug Treatment , COVID-19 , Interleukin-6 , Aged , Female , Humans , Male , Middle Aged , Bias , Cytokines , Interleukin-6/antagonists & inhibitors
2.
Lancet Child Adolesc Health ; 7(6): 379-391, 2023 06.
Article in English | MEDLINE | ID: covidwho-2301815

ABSTRACT

BACKGROUND: To date, more than 761 million confirmed SARS-CoV-2 infections have been recorded globally, and more than half of all children are estimated to be seropositive. Despite high SARS-CoV-2 infection incidences, the rate of severe COVID-19 in children is low. We aimed to assess the safety and efficacy or effectiveness of COVID-19 vaccines approved in the EU for children aged 5-11 years. METHODS: In this systematic review and meta-analysis, we included studies of any design identified through searching the COVID-19 L·OVE (living overview of evidence) platform up to Jan 23, 2023. We included studies with participants aged 5-11 years, with any COVID-19 vaccine approved by the European Medicines Agency-ie, mRNA vaccines BNT162b2 (Pfizer-BioNTech), BNT162b2 Bivalent (against original strain and omicron [BA.4 or BA.5]), mRNA-1273 (Moderna), or mRNA-1273.214 (against original strain and omicron BA.1). Efficacy and effectiveness outcomes were SARS-CoV-2 infection (PCR-confirmed or antigen-test confirmed), symptomatic COVID-19, hospital admission due to COVID-19, COVID-19-related mortality, multisystem inflammatory syndrome in children (MIS-C), and long-term effects of COVID-19 (long COVID or post-COVID-19 condition as defined by study investigators or per WHO definition). Safety outcomes of interest were serious adverse events, adverse events of special interest (eg, myocarditis), solicited local and systemic events, and unsolicited adverse events. We assessed risk of bias and rated the certainty of evidence (CoE) using the Grading of Recommendations Assessment, Development and Evaluation approach. This study was prospectively registered with PROSPERO, CRD42022306822. FINDINGS: Of 5272 screened records, we included 51 (1·0%) studies (n=17 [33%] in quantitative synthesis). Vaccine effectiveness after two doses against omicron infections was 41·6% (95% CI 28·1-52·6; eight non-randomised studies of interventions [NRSIs]; CoE low), 36·2% (21·5-48·2; six NRSIs; CoE low) against symptomatic COVID-19, 75·3% (68·0-81·0; six NRSIs; CoE moderate) against COVID-19-related hospitalisations, and 78% (48-90, one NRSI; CoE very low) against MIS-C. Vaccine effectiveness against COVID-19-related mortality was not estimable. Crude event rates for deaths in unvaccinated children were less than one case per 100 000 children, and no events were reported for vaccinated children (four NRSIs; CoE low). No study on vaccine effectiveness against long-term effects was identified. Vaccine effectiveness after three doses was 55% (50-60; one NRSI; CoE moderate) against omicron infections, and 61% (55-67; one NRSI; CoE moderate) against symptomatic COVID-19. No study reported vaccine efficacy or effectiveness against hospitalisation following a third dose. Safety data suggested no increased risk of serious adverse events (risk ratio [RR] 0·83 [95% CI 0·21-3·33]; two randomised controlled trials; CoE low), with approximately 0·23-1·2 events per 100 000 administered vaccines reported in real-life observations. Evidence on the risk of myocarditis was uncertain (RR 4·6 [0·1-156·1]; one NRSI; CoE low), with 0·13-1·04 observed events per 100 000 administered vaccines. The risk of solicited local reactions was 2·07 (1·80-2·39; two RCTs; CoE moderate) after one dose and 2·06 (1·70-2·49; two RCTs; CoE moderate) after two doses. The risk of solicited systemic reactions was 1·09 (1·04-1·16; two RCTs; CoE moderate) after one dose and 1·49 (1·34-1·65; two RCTs; CoE moderate) after two doses. The risk of unsolicited adverse events after two doses (RR 1·21 [1·07-1·38]; CoE moderate) was higher among mRNA-vaccinated compared with unvaccinated children. INTERPRETATION: In children aged 5-11 years, mRNA vaccines are moderately effective against infections with the omicron variant, but probably protect well against COVID-19 hospitalisations. Vaccines were reactogenic but probably safe. Findings of this systematic review can serve as a basis for public health policy and individual decision making on COVID-19 vaccination in children aged 5-11 years. FUNDING: German Federal Joint Committee.


Subject(s)
COVID-19 , Myocarditis , Vaccines , Child , Humans , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , BNT162 Vaccine , SARS-CoV-2 , Post-Acute COVID-19 Syndrome , mRNA Vaccines
3.
J Med Internet Res ; 25: e41177, 2023 05 04.
Article in English | MEDLINE | ID: covidwho-2269029

ABSTRACT

BACKGROUND: Clinical practice guidelines are systematically developed statements intended to optimize patient care. However, a gapless implementation of guideline recommendations requires health care personnel not only to be aware of the recommendations and to support their content but also to recognize every situation in which they are applicable. To not miss situations in which recommendations should be applied, computerized clinical decision support can be provided through a system that allows an automated monitoring of adherence to clinical guideline recommendations in individual patients. OBJECTIVE: This study aims to collect and analyze the requirements for a system that allows the monitoring of adherence to evidence-based clinical guideline recommendations in individual patients and, based on these requirements, to design and implement a software prototype that integrates guideline recommendations with individual patient data, and to demonstrate the prototype's utility in treatment recommendations. METHODS: We performed a work process analysis with experienced intensive care clinicians to develop a conceptual model of how to support guideline adherence monitoring in clinical routine and identified which steps in the model could be supported electronically. We then identified the core requirements of a software system to support recommendation adherence monitoring in a consensus-based requirements analysis within the loosely structured focus group work of key stakeholders (clinicians, guideline developers, health data engineers, and software developers). On the basis of these requirements, we designed and implemented a modular system architecture. To demonstrate its utility, we applied the prototype to monitor adherence to a COVID-19 treatment recommendation using clinical data from a large European university hospital. RESULTS: We designed a system that integrates guideline recommendations with real-time clinical data to evaluate individual guideline recommendation adherence and developed a functional prototype. The needs analysis with clinical staff resulted in a flowchart describing the work process of how adherence to recommendations should be monitored. Four core requirements were identified: the ability to decide whether a recommendation is applicable and implemented for a specific patient, the ability to integrate clinical data from different data formats and data structures, the ability to display raw patient data, and the use of a Fast Healthcare Interoperability Resources-based format for the representation of clinical practice guidelines to provide an interoperable, standards-based guideline recommendation exchange format. CONCLUSIONS: Our system has advantages in terms of individual patient treatment and quality management in hospitals. However, further studies are needed to measure its impact on patient outcomes and evaluate its resource effectiveness in different clinical settings. We specified a modular software architecture that allows experts from different fields to work independently and focus on their area of expertise. We have released the source code of our system under an open-source license and invite for collaborative further development of the system.


Subject(s)
COVID-19 Drug Treatment , COVID-19 , Humans , Focus Groups , Guideline Adherence
4.
BMC Public Health ; 23(1): 394, 2023 02 27.
Article in English | MEDLINE | ID: covidwho-2269902

ABSTRACT

BACKGROUND: Right from the beginning of the SARS-CoV-2 pandemic the general public faced the challenge to find reliable and understandable information in the overwhelming flood of information. To enhance informed decision-making, evidence-based information should be provided. Aim was to explore the general public's information needs and preferences on COVID-19 as well as the barriers to accessing evidence-based information. METHODS: We performed a cross-sectional study. Nine hundred twenty-seven panel members were invited to an online survey (12/2020-02/2021). The HeReCa-online-panel is installed at the Martin Luther University Halle-Wittenberg to assess regularly the general public's view on health issues in five regions in Germany. The survey was set up in LimeSurvey, with nine items, multiple-choice and open-ended questions that allowed to gather qualitative data. Quantitative data were analysed descriptively and a content analysis was carried out to categorise the qualitative data. RESULTS: Six hundred thirty-six panel members provided data; mean age 52 years, 56.2% female, and 64.9% with higher education qualifications. Asked about relevant topics related to COVID-19, most participants selected vaccination (63.8%), infection control (52%), and long-term effects (47.8%). The following 11 categories were derived from the qualitative analysis representing the topics of interest: vaccination, infection control, long-term effects, therapies, test methods, mental health, symptoms, structures for pandemic control, infrastructure in health care, research. Participants preferred traditional media (TV 70.6%; radio 58.5%; newspaper 32.7%) to social media, but also used the internet as sources of information, becoming aware of new information on websites (28.5%) or via email/newsletter (20.1%). The knowledge question (Which European country is most affected by the SARS-CoV-2 pandemic?) was correctly answered by 7.5% of participants. The Robert Koch Institute (93.7%) and the World Health Organization (78%) were well known, while other organisations providing health information were rarely known (< 10%). Barriers to accessing trustworthy information were lack of time (30.7%), little experience (23.1%), uncertainty about how to get access (22.2%), complexity and difficulties in understanding (23.9%), and a lack of target group orientation (15,3%). CONCLUSIONS: There are extensive information needs regarding various aspects on COVID-19 among the general population. In addition, target-specific dissemination strategies are still needed to reach different groups.


Subject(s)
COVID-19 , Humans , Female , Middle Aged , Male , COVID-19/epidemiology , SARS-CoV-2 , Cross-Sectional Studies , Academies and Institutes , Awareness
5.
Cochrane Database Syst Rev ; 12: CD015477, 2022 Dec 07.
Article in English | MEDLINE | ID: covidwho-2261173

ABSTRACT

BACKGROUND: Different forms of vaccines have been developed to prevent the SARS-CoV-2 virus and subsequent COVID-19 disease. Several are in widespread use globally.  OBJECTIVES: To assess the efficacy and safety of COVID-19 vaccines (as a full primary vaccination series or a booster dose) against SARS-CoV-2. SEARCH METHODS: We searched the Cochrane COVID-19 Study Register and the COVID-19 L·OVE platform (last search date 5 November 2021). We also searched the WHO International Clinical Trials Registry Platform, regulatory agency websites, and Retraction Watch. SELECTION CRITERIA: We included randomized controlled trials (RCTs) comparing COVID-19 vaccines to placebo, no vaccine, other active vaccines, or other vaccine schedules. DATA COLLECTION AND ANALYSIS: We used standard Cochrane methods. We used GRADE to assess the certainty of evidence for all except immunogenicity outcomes.  We synthesized data for each vaccine separately and presented summary effect estimates with 95% confidence intervals (CIs).  MAIN RESULTS: We included and analyzed 41 RCTs assessing 12 different vaccines, including homologous and heterologous vaccine schedules and the effect of booster doses. Thirty-two RCTs were multicentre and five were multinational. The sample sizes of RCTs were 60 to 44,325 participants. Participants were aged: 18 years or older in 36 RCTs; 12 years or older in one RCT; 12 to 17 years in two RCTs; and three to 17 years in two RCTs. Twenty-nine RCTs provided results for individuals aged over 60 years, and three RCTs included immunocompromized patients. No trials included pregnant women. Sixteen RCTs had two-month follow-up or less, 20 RCTs had two to six months, and five RCTs had greater than six to 12 months or less. Eighteen reports were based on preplanned interim analyses. Overall risk of bias was low for all outcomes in eight RCTs, while 33 had concerns for at least one outcome. We identified 343 registered RCTs with results not yet available.  This abstract reports results for the critical outcomes of confirmed symptomatic COVID-19, severe and critical COVID-19, and serious adverse events only for the 10 WHO-approved vaccines. For remaining outcomes and vaccines, see main text. The evidence for mortality was generally sparse and of low or very low certainty for all WHO-approved vaccines, except AD26.COV2.S (Janssen), which probably reduces the risk of all-cause mortality (risk ratio (RR) 0.25, 95% CI 0.09 to 0.67; 1 RCT, 43,783 participants; high-certainty evidence). Confirmed symptomatic COVID-19 High-certainty evidence found that BNT162b2 (BioNtech/Fosun Pharma/Pfizer), mRNA-1273 (ModernaTx), ChAdOx1 (Oxford/AstraZeneca), Ad26.COV2.S, BBIBP-CorV (Sinopharm-Beijing), and BBV152 (Bharat Biotect) reduce the incidence of symptomatic COVID-19 compared to placebo (vaccine efficacy (VE): BNT162b2: 97.84%, 95% CI 44.25% to 99.92%; 2 RCTs, 44,077 participants; mRNA-1273: 93.20%, 95% CI 91.06% to 94.83%; 2 RCTs, 31,632 participants; ChAdOx1: 70.23%, 95% CI 62.10% to 76.62%; 2 RCTs, 43,390 participants; Ad26.COV2.S: 66.90%, 95% CI 59.10% to 73.40%; 1 RCT, 39,058 participants; BBIBP-CorV: 78.10%, 95% CI 64.80% to 86.30%; 1 RCT, 25,463 participants; BBV152: 77.80%, 95% CI 65.20% to 86.40%; 1 RCT, 16,973 participants). Moderate-certainty evidence found that NVX-CoV2373 (Novavax) probably reduces the incidence of symptomatic COVID-19 compared to placebo (VE 82.91%, 95% CI 50.49% to 94.10%; 3 RCTs, 42,175 participants). There is low-certainty evidence for CoronaVac (Sinovac) for this outcome (VE 69.81%, 95% CI 12.27% to 89.61%; 2 RCTs, 19,852 participants). Severe or critical COVID-19 High-certainty evidence found that BNT162b2, mRNA-1273, Ad26.COV2.S, and BBV152 result in a large reduction in incidence of severe or critical disease due to COVID-19 compared to placebo (VE: BNT162b2: 95.70%, 95% CI 73.90% to 99.90%; 1 RCT, 46,077 participants; mRNA-1273: 98.20%, 95% CI 92.80% to 99.60%; 1 RCT, 28,451 participants; AD26.COV2.S: 76.30%, 95% CI 57.90% to 87.50%; 1 RCT, 39,058 participants; BBV152: 93.40%, 95% CI 57.10% to 99.80%; 1 RCT, 16,976 participants). Moderate-certainty evidence found that NVX-CoV2373 probably reduces the incidence of severe or critical COVID-19 (VE 100.00%, 95% CI 86.99% to 100.00%; 1 RCT, 25,452 participants). Two trials reported high efficacy of CoronaVac for severe or critical disease with wide CIs, but these results could not be pooled. Serious adverse events (SAEs) mRNA-1273, ChAdOx1 (Oxford-AstraZeneca)/SII-ChAdOx1 (Serum Institute of India), Ad26.COV2.S, and BBV152 probably result in little or no difference in SAEs compared to placebo (RR: mRNA-1273: 0.92, 95% CI 0.78 to 1.08; 2 RCTs, 34,072 participants; ChAdOx1/SII-ChAdOx1: 0.88, 95% CI 0.72 to 1.07; 7 RCTs, 58,182 participants; Ad26.COV2.S: 0.92, 95% CI 0.69 to 1.22; 1 RCT, 43,783 participants); BBV152: 0.65, 95% CI 0.43 to 0.97; 1 RCT, 25,928 participants). In each of these, the likely absolute difference in effects was fewer than 5/1000 participants. Evidence for SAEs is uncertain for BNT162b2, CoronaVac, BBIBP-CorV, and NVX-CoV2373 compared to placebo (RR: BNT162b2: 1.30, 95% CI 0.55 to 3.07; 2 RCTs, 46,107 participants; CoronaVac: 0.97, 95% CI 0.62 to 1.51; 4 RCTs, 23,139 participants; BBIBP-CorV: 0.76, 95% CI 0.54 to 1.06; 1 RCT, 26,924 participants; NVX-CoV2373: 0.92, 95% CI 0.74 to 1.14; 4 RCTs, 38,802 participants). For the evaluation of heterologous schedules, booster doses, and efficacy against variants of concern, see main text of review. AUTHORS' CONCLUSIONS: Compared to placebo, most vaccines reduce, or likely reduce, the proportion of participants with confirmed symptomatic COVID-19, and for some, there is high-certainty evidence that they reduce severe or critical disease. There is probably little or no difference between most vaccines and placebo for serious adverse events. Over 300 registered RCTs are evaluating the efficacy of COVID-19 vaccines, and this review is updated regularly on the COVID-NMA platform (covid-nma.com). Implications for practice Due to the trial exclusions, these results cannot be generalized to pregnant women, individuals with a history of SARS-CoV-2 infection, or immunocompromized people. Most trials had a short follow-up and were conducted before the emergence of variants of concern. Implications for research Future research should evaluate the long-term effect of vaccines, compare different vaccines and vaccine schedules, assess vaccine efficacy and safety in specific populations, and include outcomes such as preventing long COVID-19. Ongoing evaluation of vaccine efficacy and effectiveness against emerging variants of concern is also vital.

7.
J Clin Epidemiol ; 152: 36-46, 2022 Sep 27.
Article in English | MEDLINE | ID: covidwho-2041911

ABSTRACT

OBJECTIVES: The aim of this study is to describe (1) registered and (2) published systematic reviews (SRs) on COVID-19 treatments, and to analyze (3) the proportion of publications among registered SRs and (4) the proportion of registrations among published SRs. STUDY DESIGN AND SETTING: This meta-research study (CRD42021240423) is part of CEOsys (http://www.covid-evidenz.de/). Two reviewers identified protocols in PROSPERO (registered January 2020 to September 2020) and SRs published as preprint or peer-reviewed article in L·OVE (Living OVerview of the Evidence) COVID-19 (by May 2021). SRs of all types assessing COVID-19 treatments in humans were included. RESULTS: We included 239 PROSPERO protocols and 346 SRs published in L·OVE. In both samples, the affiliation of the corresponding author with an Asian institution, standard SR as review type, and meta-analysis as synthesis method were the most frequent characteristics. Living SRs made up ≤10%. A total of 71 of 239 (29.7%) PROSPERO protocols were published as SR by February 2022, that is, after at least 17 months of follow-up (25 of 71 as preprints, 35.2%). In L·OVE, 261 of 346 (75.4%) SRs published by May 2021 were not registered in PROSPERO. CONCLUSION: Overall, one-third PROSPERO protocols were published and three-fourth published SRs were not registered. We strongly encourage authors to register and publish their SRs promptly to reduce research waste and to allocate resources efficiently during the pandemic and beyond.

8.
Cochrane Database Syst Rev ; 8: CD015270, 2022 08 03.
Article in English | MEDLINE | ID: covidwho-1971203

ABSTRACT

BACKGROUND: Vaccines are effective in preventing severe COVID-19, a disease for which few treatments are available and which can lead to disability or death. Widespread vaccination against COVID-19 may help protect those not yet able to get vaccinated. In addition, new and vaccine-resistant mutations of SARS-CoV-2 may be less likely to develop if the spread of COVID-19 is limited. Different vaccines are now widely available in many settings. However, vaccine hesitancy is a serious threat to the goal of nationwide vaccination in many countries and poses a substantial threat to population health. This scoping review maps interventions aimed at increasing COVID-19 vaccine uptake and decreasing COVID-19 vaccine hesitancy. OBJECTIVES: To scope the existing research landscape on interventions to enhance the willingness of different populations to be vaccinated against COVID-19, increase COVID-19 vaccine uptake, or decrease COVID-19 vaccine hesitancy, and to map the evidence according to addressed populations and intervention categories. SEARCH METHODS: We searched Cochrane COVID-19 Study Register, Web of Science (Science Citation Index Expanded and Emerging Sources Citation Index), WHO COVID-19 Global literature on coronavirus disease, PsycINFO, and CINAHL to 11 October 2021. SELECTION CRITERIA: We included studies that assess the impact of interventions implemented to enhance the willingness of different populations to be vaccinated against COVID-19, increase vaccine uptake, or decrease COVID-19 vaccine hesitancy. We included randomised controlled trials (RCTs), non-randomised studies of intervention (NRSIs), observational studies and case studies with more than 100 participants. Furthermore, we included systematic reviews and meta-analyses. We did not limit the scope of the review to a specific population or to specific outcomes assessed. We excluded interventions addressing hesitancy towards vaccines for diseases other than COVID-19. DATA COLLECTION AND ANALYSIS: Data were analysed according to a protocol uploaded to the Open Science Framework. We used an interactive scoping map to visualise the results of our scoping review. We mapped the identified interventions according to pre-specified intervention categories, that were adapted to better fit the evidence. The intervention categories were: communication interventions, policy interventions, educational interventions, incentives (both financial and non-financial), interventions to improve access, and multidimensional interventions. The study outcomes were also included in the mapping. Furthermore, we mapped the country in which the study was conducted, the addressed population, and whether the design was randomised-controlled or not. MAIN RESULTS: We included 96 studies in the scoping review, 35 of which are ongoing and 61 studies with published results. We did not identify any relevant systematic reviews. For an overview, please see the interactive scoping map (https://tinyurl.com/2p9jmx24) STUDIES WITH PUBLISHED RESULTS Of the 61 studies with published results, 46 studies were RCTs and 15 NRSIs. The interventions investigated in the studies were heterogeneous with most studies testing communication strategies to enhance COVID-19 vaccine uptake. Most studies assessed the willingness to get vaccinated as an outcome. The majority of studies were conducted in English-speaking high-income countries. Moreover, most studies investigated digital interventions in an online setting. Populations that were addressed were diverse. For example, studies targeted healthcare workers, ethnic minorities in the USA, students, soldiers, at-risk patients, or the general population.  ONGOING STUDIES Of the 35 ongoing studies, 29 studies are RCTs and six NRSIs. Educational and communication interventions were the most used types of interventions. The majority of ongoing studies plan to assess vaccine uptake as an outcome. Again, the majority of studies are being conducted in English-speaking high-income countries. In contrast to the studies with published results, most ongoing studies will not be conducted online. Addressed populations range from minority populations in the USA to healthcare workers or students. Eleven ongoing studies have estimated completion dates in 2022.   AUTHORS' CONCLUSIONS: We were able to identify and map a variety of heterogeneous interventions for increasing COVID-19 vaccine uptake or decreasing vaccine hesitancy. Our results demonstrate that this is an active field of research with 61 published studies and 35 studies still ongoing. This review gives a comprehensive overview of interventions to increase COVID-19 vaccine uptake and can be the foundation for subsequent systematic reviews on the effectiveness of interventions to increase COVID-19 vaccine uptake.  A research gap was shown for studies conducted in low and middle-income countries and studies investigating policy interventions and improved access, as well as for interventions addressing children and adolescents. As COVID-19 vaccines become more widely available, these populations and interventions should not be neglected in research. AUTHORS CONCLUSIONS: We were able to identify and map a variety of heterogeneous interventions for increasing COVID-19 vaccine uptake or decreasing vaccine hesitancy. Our results demonstrate that this is an active field of research with 61 published studies and 35 studies still ongoing. This review gives a comprehensive overview of interventions to increase COVID-19 vaccine uptake and can be the foundation for subsequent systematic reviews on the effectiveness of interventions to increase COVID-19 vaccine uptake.  A research gap was shown for studies conducted in low and middle-income countries and studies investigating policy interventions and improved access, as well as for interventions addressing children and adolescents. As COVID-19 vaccines become more widely available, these populations and interventions should not be neglected in research.


Subject(s)
COVID-19 , SARS-CoV-2 , Adolescent , COVID-19/prevention & control , COVID-19 Vaccines , Child , Health Personnel/education , Humans , Randomized Controlled Trials as Topic , Vaccination
9.
Res Synth Methods ; 13(5): 558-572, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-1888762

ABSTRACT

Public health and social measures (PHSM) have been central to the COVID-19 response. Consequently, there has been much pressure on decision-makers to make evidence-informed decisions and on researchers to synthesize the evidence regarding these measures. This article describes our experiences, responses and lessons learnt regarding key challenges when planning and conducting rapid reviews of PHSM during the COVID-19 pandemic. Stakeholder consultations and scoping reviews to obtain an overview of the evidence inform the scope of reviews that are policy-relevant and feasible. Multiple complementary reviews serve to examine the benefits and harms of PHSM across different populations and contexts. Conceiving reviews of effectiveness as adaptable living reviews helps to respond to evolving evidence needs and an expanding evidence base. An appropriately skilled review team and good planning, coordination and communication ensures smooth and rigorous processes and efficient use of resources. Scientific rigor, the practical implications of PHSM-related complexity and likely time savings should be carefully weighed in deciding on methodological shortcuts. Making the best possible use of modeling studies represents a particular challenge, and methods should be carefully chosen, piloted and implemented. Our experience raises questions regarding the nature of rapid reviews and regarding how different types of evidence should be considered in making decisions about PHSM during a global pandemic. We highlight the need for readily available protocols for conducting studies on the effectiveness, unintended consequences and implementation of PHSM in a timely manner, as well as the need for rapid review standards tailored to "rapid" versus "emergency" mode reviewing.


Subject(s)
COVID-19 , Pandemics , Decision Making , Humans , Public Health
10.
BMJ Open ; 12(5): e060255, 2022 05 09.
Article in English | MEDLINE | ID: covidwho-1832467

ABSTRACT

OBJECTIVE: We investigated characteristics of systematic reviews (SRs) assessing measures to prevent COVID-19 by (1) identifying SR registrations in Prospective Register of Systematic Reviews (PROSPERO), (2) identifying published SRs in COVID-19 Living Overview of the Evidence (L-OVE) and (3) estimating the proportion of PROSPERO registrations published as full SR between 8 and 16 months after registration. STUDY DESIGN: This meta-research study is part of the German CEOsys project, www.covid-evidenz.de. We searched PROSPERO entries registered between 1 January 2020 and 31 August 2020, and we searched COVID-19 L-OVE for published SRs (search date: 5 May 2021) focusing on measures to prevent COVID-19 and SARS-CoV-2 transmission. The two samples were screened for eligibility and key characteristics were extracted and summarised. RESULTS: Of 612 PROSPERO registrations, 47 focused on prevention and were included. The preventive measures included public health interventions (20), followed by personal protective equipment (10), vaccinations (9) and others (8). In total, 13 of 47 (28%) PROSPERO registrations had been published as full SR (as preprint only (6), as peer-reviewed article only (6), as preprint and peer-reviewed article (1)). Median time between PROSPERO registration and publication was 5 months for peer-reviewed SRs and 2 months for preprints.Of the 2182 entries identified in COVID-19 L-OVE, 51 published SRs focused on prevention and were included. Similar to the PROSPERO sample, most published SRs focused on public health interventions (21). The number of included primary studies ranged between 0 and 64 (median: 7). Nine published SRs did not include any studies because of a lack of primary studies. CONCLUSION: Considering the urgent information needs of policymakers and the public, our findings reveal the high-speed publication of preprints and lack of primary studies in the beginning of the COVID-19 crisis. Further meta-research on COVID-19 SRs is important to improve research efficiency among researchers across the world. PROSPERO REGISTRATION NUMBER: CRD42021240423.


Subject(s)
COVID-19 , COVID-19/prevention & control , Humans , Peer Review , Research Report , SARS-CoV-2 , Systematic Reviews as Topic
11.
J Clin Epidemiol ; 147: 83-94, 2022 07.
Article in English | MEDLINE | ID: covidwho-1828797

ABSTRACT

OBJECTIVES: To describe divergence between actionable statements issued by coronavirus disease 2019 (COVID-19) guideline developers cataloged on the "COVID-19 Recommendations and Gateway to Contextualization" platform. STUDY DESIGN AND SETTING: We defined divergence as at least two comparable actionable statements with different explicit judgments of strength, direction, or subgroup consideration of the population or intervention. We applied a content analysis to compare guideline development methods for a sample of diverging statements and to evaluate factors associated with divergence. RESULTS: Of the 138 guidelines evaluated, 85 (62%) contained at least one statement that diverged from another guideline. We identified 223 diverging statements in these 85 guidelines. We grouped statements into 66 clusters. Each cluster addressed the same population, intervention, and comparator group or just similar interventions. Clinical practice statements were more likely to diverge in an explicit judgment of strength or direction compared to public health statements. Statements were more likely to diverge in strength than direction. The date of publication, used evidence, interpretation of evidence, and contextualization considerations were associated with divergence. CONCLUSION: More than half of the assessed guidelines issued at least one diverging statement. This study helps in understanding the types of differences between guidelines issuing comparable statements and factors associated with their divergence.


Subject(s)
COVID-19 , Public Health , COVID-19/epidemiology , Humans
12.
Vaccines (Basel) ; 10(5)2022 Apr 28.
Article in English | MEDLINE | ID: covidwho-1820431

ABSTRACT

(1) Background: Health care workers (HCWs) play a key role in increasing anti-COVID vaccination rates. Fear of potential side effects is one of the main reasons for vaccine hesitancy. We investigated which side effects are of concern to HCWs and how these are associated with vaccine hesitancy. (2) Methods: Data were collected in an online survey in February 2021 among HCWs from across Germany with 4500 included participants. Free-text comments on previously experienced vaccination side effects, and fear of short- and long-term side effects of the COVID-19 vaccination were categorized and analyzed. (3) Results: Most feared short-term side effects were vaccination reactions, allergic reactions, and limitations in daily life. Most feared long-term side effects were (auto-) immune reactions, neurological side effects, and currently unknown long-term consequences. Concerns about serious vaccination side effects were associated with vaccination refusal. There was a clear association between refusal of COVID-19 vaccination in one's personal environment and fear of side effects. (4) Conclusions: Transparent information about vaccine side effects is needed, especially for HCW. Especially when the participants' acquaintances advised against vaccination, they were significantly more likely to fear side effects. Thus, further education of HCW is necessary to achieve good information transfer in clusters as well.

13.
BMJ Evid Based Med ; 27(6): 361-369, 2022 12.
Article in English | MEDLINE | ID: covidwho-1794512

ABSTRACT

OBJECTIVES: To evaluate the development and quality of actionable statements that qualify as good practice statements (GPS) reported in COVID-19 guidelines. DESIGN AND SETTING: Systematic review . We searched MEDLINE, MedSci, China National Knowledge Infrastructure (CNKI), databases of Grading of Recommendations Assessment, Development and Evaluation (GRADE) Guidelines, NICE, WHO and Guidelines International Network (GIN) from March 2020 to September 2021. We included original or adapted recommendations addressing any COVID-19 topic. MAIN OUTCOME MEASURES: We used GRADE Working Group criteria for assessing the appropriateness of issuing a GPS: (1) clear and actionable; (2) rationale necessitating the message for healthcare practice; (3) practicality of systematically searching for evidence; (4) likely net positive consequences from implementing the GPS and (5) clear link to the indirect evidence. We assessed guideline quality using the Appraisal of Guidelines for Research and Evaluation II tool. RESULTS: 253 guidelines from 44 professional societies issued 3726 actionable statements. We classified 2375 (64%) as GPS; of which 27 (1%) were labelled as GPS by guideline developers. 5 (19%) were labelled as GPS by their authors but did not meet GPS criteria. Of the 2375 GPS, 85% were clear and actionable; 59% provided a rationale necessitating the message for healthcare practice, 24% reported the net positive consequences from implementing the GPS. Systematic collection of evidence was deemed impractical for 13% of the GPS, and 39% explained the chain of indirect evidence supporting GPS development. 173/2375 (7.3%) statements explicitly satisfied all five criteria. The guidelines' overall quality was poor regardless of the appropriateness of GPS development and labelling. CONCLUSIONS: Statements that qualify as GPS are common in COVID-19 guidelines but are characterised by unclear designation and development processes, and methodological weaknesses.


Subject(s)
COVID-19 , Humans , China
14.
Anaesthesist ; 71(4): 281-290, 2022 04.
Article in German | MEDLINE | ID: covidwho-1777695

ABSTRACT

BACKGROUND: In the context of COVID-19, the German CEOsys project (COVID-19 Evidenz Ökosystem, www.covid-evidenz.de ) identifies, evaluates and summarizes the results of scientific studies to obtain evidence on this disease. The evidence syntheses are used to derive specific recommendations for clinical practice and to contribute to national guidelines. Besides the necessity of conducting good quality evidence syntheses during a pandemic, just as important is that the dissemination of evidence needs to be quick and efficient, especially in a health crisis. The CEOsys project has set itself this challenge. OBJECTIVE: Preparing the most suitable distribution of evidence syntheses as part of the CEOsys project tasks. METHODS: Intensive care unit (ICU) personnel in Germany were surveyed via categorical and free text questions. The survey focused on the following topics: evidence syntheses, channels and strategies of distribution, possibility of feedback, structure and barriers of dissemination and trustworthiness of various organizations. Profession, qualification, setting and size of the facility were recorded. Questionnaires were pretested throughout the queried professions (physician, nurse, others). The survey was anonymously carried out online through SosciSurvey® and an e­mail was sent directly to 940 addresses. The survey was launched on 3 December, a reminder was sent after 14 days and it ended on 31 December. The survey was also announced via e­mail through DIVI. RESULTS: Of 317 respondents 200 completed the questionnaire. All information was analyzed including the responses from incomplete questionnaires. The most stated barriers were lack of time and access. Especially residents and nurses without specialization in intensive care mentioned uncertainty or insufficient experience in dealing with evidence syntheses as a barrier. Active distribution of evidence syntheses was clearly preferred. More than half of the participants chose websites of public institutions, medical journals, professional societies and e­mail newsletters for drawing attention to new evidence syntheses. Short versions, algorithms and webinars were the most preferred strategies for dissemination. Trust in organizations supplying information on the COVID-19 pandemic was given to professional societies and the Robert Koch Institute (RKI) as the German governmental institute for infections and public health. The respondents' prioritized topics are long-term consequences of the disease, protection of medical personnel against infection and possibilities of ventilation treatment. CONCLUSION: Even though universally valid, evidence syntheses should be actively brought to the target audience, especially during a health crisis such as the COVID-19 pandemic with its exceptional challenges including lack of time and uncertainties in patient care. The contents should be clear, short (short versions, algorithms) and with free access. E­mail newsletters, websites or medical journals should continuously report on new evidence syntheses. Professional societies and the governmental institute for infections and public health should be involved in dissemination due to their obvious trustworthiness.


Subject(s)
COVID-19 , Pandemics , Critical Care , Germany/epidemiology , Humans , Pandemics/prevention & control , Surveys and Questionnaires
15.
Cochrane Database Syst Rev ; 1: CD015308, 2022 01 26.
Article in English | MEDLINE | ID: covidwho-1653145

ABSTRACT

BACKGROUND: Interleukin-1 (IL-1) blocking agents have been used for treating severe coronavirus disease 2019 (COVID-19), on the premise that their immunomodulatory effect might be beneficial in people with COVID-19. OBJECTIVES: To assess the effects of IL-1 blocking agents compared with standard care alone or with placebo on effectiveness and safety outcomes in people with COVID-19. We will update this assessment regularly. SEARCH METHODS: We searched the Cochrane COVID-19 Study Register and the COVID-19 L-OVE Platform (search date 5 November 2021). These sources are maintained through regular searches of MEDLINE, Embase, CENTRAL, trial registers and other sources. We also checked the World Health Organization International Clinical Trials Registry Platform, regulatory agency websites, Retraction Watch (search date 3 November 2021). SELECTION CRITERIA: We included randomised controlled trials (RCTs) evaluating IL-1 blocking agents compared with standard care alone or with placebo for people with COVID-19, regardless of disease severity. DATA COLLECTION AND ANALYSIS: We followed Cochrane methodology. The protocol was amended to reduce the number of outcomes considered. Two researchers independently screened and extracted data and assessed the risk of bias with the Cochrane Risk of Bias 2 tool. We rated the certainty of evidence using the GRADE approach for the critical outcomes of clinical improvement (Day 28; ≥ D60); WHO Clinical Progression Score of level 7 or above (i.e. the proportion of participants with mechanical ventilation +/- additional organ support OR death) (D28; ≥ D60); all-cause mortality (D28; ≥ D60); incidence of any adverse events; and incidence of serious adverse events. MAIN RESULTS: We identified four RCTs of anakinra (three published in peer-reviewed journals, one reported as a preprint) and two RCTs of canakinumab (published in peer-reviewed journals). All trials were multicentre (2 to 133 centres). Two trials stopped early (one due to futility and one as the trigger for inferiority was met). The median/mean age range varied from 58 to 68 years; the proportion of men varied from 58% to 77%. All participants were hospitalised; 67% to 100% were on oxygen at baseline but not intubated; between 0% and 33% were intubated at baseline. We identified a further 16 registered trials with no results available, of which 15 assessed anakinra (four completed, four terminated, five ongoing, three not recruiting) and one (completed) trial assessed canakinumab. Effectiveness of anakinra for people with COVID-19 Anakinra probably results in little or no increase in clinical improvement at D28 (risk ratio (RR) 1.08, 95% confidence interval (CI) 0.97 to 1.20; 3 RCTs, 837 participants; absolute effect: 59 more per 1000 (from 22 fewer to 147 more); moderate-certainty evidence. The evidence is uncertain about an effect of anakinra on 1) the proportion of participants with a WHO Clinical Progression Score of level 7 or above at D28 (RR 0.67, 95% CI 0.36 to 1.22; 2 RCTs, 722 participants; absolute effect: 55 fewer per 1000 (from 107 fewer to 37 more); low-certainty evidence) and ≥ D60 (RR 0.54, 95% CI 0.30 to 0.96; 1 RCT, 606 participants; absolute effect: 47 fewer per 1000 (from 72 fewer to 4 fewer) low-certainty evidence); and 2) all-cause mortality at D28 (RR 0.69, 95% CI 0.34 to 1.39; 2 RCTs, 722 participants; absolute effect: 32 fewer per 1000 (from 68 fewer to 40 more); low-certainty evidence).  The evidence is very uncertain about an effect of anakinra on 1) the proportion of participants with clinical improvement at ≥ D60 (RR 0.93, 95% CI 0.78 to 1.12; 1 RCT, 115 participants; absolute effect: 59 fewer per 1000 (from 186 fewer to 102 more); very low-certainty evidence); and 2) all-cause mortality at ≥ D60 (RR 1.03, 95% CI 0.68 to 1.56; 4 RCTs, 1633 participants; absolute effect: 8 more per 1000 (from 84 fewer to 147 more); very low-certainty evidence). Safety of anakinra for people with COVID-19 Anakinra probably results in little or no increase in adverse events (RR 1.02, 95% CI 0.94 to 1.11; 2 RCTs, 722 participants; absolute effect: 14 more per 1000 (from 43 fewer to 78 more); moderate-certainty evidence).  The evidence is uncertain regarding an effect of anakinra on serious adverse events (RR 0.95, 95% CI 0.58 to 1.56; 2 RCTs, 722 participants; absolute effect: 12 fewer per 1000 (from 104 fewer to 138 more); low-certainty evidence). Effectiveness of canakinumab for people with COVID-19 Canakinumab probably results in little or no increase in clinical improvement at D28 (RR 1.05, 95% CI 0.96 to 1.14; 2 RCTs, 499 participants; absolute effect: 42 more per 1000 (from 33 fewer to 116 more); moderate-certainty evidence).  The evidence of an effect of canakinumab is uncertain on 1) the proportion of participants with a WHO Clinical Progression Score of level 7 or above at D28 (RR 0.72, 95% CI 0.44 to 1.20; 2 RCTs, 499 participants; absolute effect: 35 fewer per 1000 (from 69 fewer to 25 more); low-certainty evidence); and 2) all-cause mortality at D28 (RR:0.75; 95% CI 0.39 to 1.42); 2 RCTs, 499 participants; absolute effect: 20 fewer per 1000 (from 48 fewer to 33 more); low-certainty evidence).  The evidence is very uncertain about an effect of canakinumab on all-cause mortality at ≥ D60 (RR 0.55, 95% CI 0.16 to 1.91; 1 RCT, 45 participants; absolute effect: 112 fewer per 1000 (from 210 fewer to 227 more); very low-certainty evidence). Safety of canakinumab for people with COVID-19 Canakinumab probably results in little or no increase in adverse events (RR 1.02; 95% CI 0.86 to 1.21; 1 RCT, 454 participants; absolute effect: 11 more per 1000 (from 74 fewer to 111 more); moderate-certainty evidence). The evidence of an effect of canakinumab on serious adverse events is uncertain (RR 0.80, 95% CI 0.57 to 1.13; 2 RCTs, 499 participants; absolute effect: 44 fewer per 1000 (from 94 fewer to 28 more); low-certainty evidence). AUTHORS' CONCLUSIONS: Overall, we did not find evidence for an important beneficial effect of IL-1 blocking agents. The evidence is uncertain or very uncertain for several outcomes. Sixteen trials of anakinra and canakinumab with no results are currently registered, of which four are completed, and four terminated. The findings of this review are updated on the COVID-NMA platform (covid-nma.com).


Subject(s)
COVID-19 Drug Treatment , Interleukin-1/antagonists & inhibitors , Aged , Female , Humans , Male , Middle Aged , Randomized Controlled Trials as Topic , Respiration, Artificial
16.
Cochrane Database Syst Rev ; 5: CD013212, 2020 05 07.
Article in English | MEDLINE | ID: covidwho-1453527

ABSTRACT

BACKGROUND: Hypertension is a major public health challenge affecting more than one billion people worldwide; it disproportionately affects populations in low- and middle-income countries (LMICs), where health systems are generally weak. The increasing prevalence of hypertension is associated with population growth, ageing, genetic factors, and behavioural risk factors, such as excessive salt and fat consumption, physical inactivity, being overweight and obese, harmful alcohol consumption, and poor management of stress. Over the long term, hypertension leads to risk for cardiovascular events, such as heart disease, stroke, kidney failure, disability, and premature mortality. Cardiovascular events can be preventable when high-risk populations are targeted, for example, through population-wide screening strategies. When available resources are limited, taking a total risk approach whereby several risk factors of hypertension are taken into consideration (e.g. age, gender, lifestyle factors, diabetes, blood cholesterol) can enable more accurate targeting of high-risk groups. Targeting of high-risk groups can help reduce costs in that resources are not spent on the entire population. Early detection in the form of screening for hypertension (and associated risk factors) can help identify high-risk groups, which can result in timely treatment and management of risk factors. Ultimately, early detection can help reduce morbidity and mortality linked to it and can help contain health-related costs, for example, those associated with hospitalisation due to severe illness and poorly managed risk factors and comorbidities. OBJECTIVES: To assess the effectiveness of different screening strategies for hypertension (mass, targeted, or opportunistic) to reduce morbidity and mortality associated with hypertension. SEARCH METHODS: An Information Specialist searched the Cochrane Register of Studies (CRS-Web), the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, Embase, Latin American Caribbean Health Sciences Literature (LILACS) Bireme, ClinicalTrials.gov, and the World Health Organization International Clinical Trials Registry Platform (WHO ICTRP) without language, publication year, or publication status restrictions. The searches were conducted from inception until 9 April 2020. SELECTION CRITERIA: Randomised controlled trials (RCTs) and non-RCTs (NRCTs), that is, controlled before and after (CBA), interrupted time series (ITS), and prospective analytic cohort studies of healthy adolescents, adults, and elderly people participating in mass, targeted, or opportunistic screening of hypertension. DATA COLLECTION AND ANALYSIS: Screening of all retrieved studies was done in Covidence. A team of reviewers, in pairs, independently assessed titles and abstracts of identified studies and acquired full texts for studies that were potentially eligible. Studies were deemed to be eligible for full-text screening if two review authors agreed, or if consensus was reached through discussion with a third review author. It was planned that at least two review authors would independently extract data from included studies, assess risk of bias using pre-specified Cochrane criteria, and conduct a meta-analysis of sufficiently similar studies or present a narrative synthesis of the results. MAIN RESULTS: We screened 9335 titles and abstracts. We identified 54 potentially eligible studies for full-text screening. However, no studies met the eligibility criteria. AUTHORS' CONCLUSIONS: There is an implicit assumption that early detection of hypertension through screening can reduce the burden of morbidity and mortality, but this assumption has not been tested in rigorous research studies. High-quality evidence from RCTs or programmatic evidence from NRCTs on the effectiveness and costs or harms of different screening strategies for hypertension (mass, targeted, or opportunistic) to reduce hypertension-related morbidity and mortality is lacking.


Subject(s)
Hypertension/diagnosis , Early Diagnosis , Humans , Mass Screening
17.
GMS Hyg Infect Control ; 16: Doc21, 2021.
Article in English | MEDLINE | ID: covidwho-1290316

ABSTRACT

Aim: Recommendations on hygiene measures, personal protective equipment (PPE), isolation, and antibiotic prophylaxis were developed during the coronavirus 2019 disease (COVID-19) pandemic and have been revised several times to date. Some of the underlying literature indicates a large evidence gap. We suspect that this leads to a large variance of measures on German intensive care units (ICU). Methods: A mixed methods online survey among intensive-care specialists in Germany caring for COVID-19 patients was conducted in December 2020. Results: We received responses from 205 German ICUs that had treated COVID-19 patients to date. There was wide variation in the use of PPE. Polymerase Chain reaction (PCR) testing for severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) was used by 94.8% of the units, with an average waiting time of 12 hours for the result. 18.7% of the respondents prescribed antibiotic prophylaxis in COVID-19 patients. Conclusion: We found a high variance in essential care strategies for COVID-19 patients on German intensive care units. This included differences in infection prophylaxis, personal protective equipment, and the indication of prophylactic antibiotic therapy. Based on our results, we recommend further studies to quantify and improve guideline adherence.

18.
Global Health ; 17(1): 34, 2021 03 29.
Article in English | MEDLINE | ID: covidwho-1158211

ABSTRACT

BACKGROUND: Mental burden due to the SARS-CoV-2 pandemic has been widely reported for the general public and specific risk groups like healthcare workers and different patient populations. We aimed to assess its impact on mental health during the early phase by comparing pandemic with prepandemic data and to identify potential risk and protective factors. METHODS: For this systematic review and meta-analyses, we systematically searched PubMed, PsycINFO, and Web of Science from January 1, 2019 to May 29, 2020, and screened reference lists of included studies. In addition, we searched PubMed and PsycINFO for prepandemic comparative data. Survey studies assessing mental burden by the SARS-CoV-2 pandemic in the general population, healthcare workers, or any patients (eg, COVID-19 patients), with a broad range of eligible mental health outcomes, and matching studies evaluating prepandemic comparative data in the same population (if available) were included. We used multilevel meta-analyses for main, subgroup, and sensitivity analyses, focusing on (perceived) stress, symptoms of anxiety and depression, and sleep-related symptoms as primary outcomes. RESULTS: Of 2429 records retrieved, 104 were included in the review (n = 208,261 participants), 43 in the meta-analysis (n = 71,613 participants). While symptoms of anxiety (standardized mean difference [SMD] 0.40; 95% CI 0.15-0.65) and depression (SMD 0.67; 95% CI 0.07-1.27) were increased in the general population during the early phase of the pandemic compared with prepandemic conditions, mental burden was not increased in patients as well as healthcare workers, irrespective of COVID-19 patient contact. Specific outcome measures (eg, Patient Health Questionnaire) and older comparative data (published ≥5 years ago) were associated with increased mental burden. Across the three population groups, existing mental disorders, female sex, and concerns about getting infected were repeatedly reported as risk factors, while older age, a good economic situation, and education were protective. CONCLUSIONS: This meta-analysis paints a more differentiated picture of the mental health consequences in pandemic situations than previous reviews. High-quality, representative surveys, high granular longitudinal studies, and more research on protective factors are required to better understand the psychological impacts of the SARS-CoV-2 pandemic and to help design effective preventive measures and interventions that are tailored to the needs of specific population groups.


Subject(s)
COVID-19/psychology , Mental Disorders/etiology , Mental Health , Pandemics , Adolescent , Adult , Aged , Anxiety/epidemiology , Anxiety/etiology , Depression/epidemiology , Depression/etiology , Female , Humans , Male , Mental Disorders/epidemiology , Middle Aged , Protective Factors , SARS-CoV-2 , Sleep Wake Disorders/epidemiology , Sleep Wake Disorders/etiology , Stress, Psychological/epidemiology , Stress, Psychological/etiology
19.
Cochrane Database Syst Rev ; 3: CD013881, 2021 03 18.
Article in English | MEDLINE | ID: covidwho-1139209

ABSTRACT

BACKGROUND: Interleukin 6 (IL-6) blocking agents have been used for treating severe coronavirus disease 2019 (COVID-19). Their immunosuppressive effect might be valuable in patients with COVID-19 characterised by substantial immune system dysfunction by controlling inflammation and promoting disease tolerance. OBJECTIVES: To assess the effect of IL-6 blocking agents compared to standard care alone or with placebo on efficacy and safety outcomes in COVID-19. We will update this assessment regularly. SEARCH METHODS: We searched the World Health Organization (WHO) International Clinical Trials Registry Platform (up to 11 February 2021) and the L-OVE platform, and Cochrane COVID-19 Study Register to identify trials up to 26 February 2021. SELECTION CRITERIA: We included randomised controlled trials (RCTs) evaluating IL-6 blocking agents compared with standard care alone or with placebo for people with COVID-19, regardless of disease severity. DATA COLLECTION AND ANALYSIS: We followed standard Cochrane methodology. The protocol was amended to reduce the number of outcomes considered. Two review authors independently collected data and assessed the risk of bias with the Cochrane Risk of Bias 2 tool. We rated the certainty of evidence with the GRADE approach for the critical outcomes such as clinical improvement (defined as hospital discharge or improvement on the scale used by trialists to evaluate clinical progression or recovery) (day (D) 28 / ≥ D60); WHO Clinical Progression Score of level 7 or above (i.e. the proportion of participants with mechanical ventilation +/- additional organ support OR death) (D28 / ≥ D60); all-cause mortality (D28 / ≥ D60); incidence of any adverse events; and incidence of serious adverse events. MAIN RESULTS: We identified 10 RCTs with available data including one platform trial comparing tocilizumab and sarilumab with standard of care. These trials evaluated tocilizumab (nine RCTs including two platform trials; seven were reported as peer-reviewed articles, two as preprints; 6428 randomised participants); and two sarilumab (one platform trial reported as peer reviewed article, one reported as preprint, 880 randomised participants). All trials included were multicentre trials. They were conducted in Brazil, China, France, Italy, UK, USA, and four were multi-country trials. The mean age range of participants ranged from 56 to 65 years; 4572 (66.3%) of trial participants were male. Disease severity ranged from mild to critical disease. The reported proportion of participants on oxygen at baseline but not intubated varied from 56% to 100% where reported. Five trials reported the inclusion of intubated patients at baseline. We identified a further 20 registered RCTs of tocilizumab compared to placebo/standard care (five completed without available results, five terminated without available results, eight ongoing, two not recruiting); 11 RCTs of sarilumab (two completed without results, three terminated without available results, six ongoing); six RCTs of clazakisumab (five ongoing, one not recruiting); two RCTs of olokizumab (one completed, one not recruiting); one of siltuximab (ongoing) and one RCT of levilimab (completed without available results). Of note, three were cancelled (2 tocilizumab, 1 clazakisumab). One multiple-arm RCT evaluated both tocilizumab and sarilumab compared to standard of care, one three-arm RCT evaluated tocilizumab and siltuximab compared to standard of care and consequently they appear in each respective comparison. Tocilizumab versus standard care alone or with placebo a. Effectiveness of tocilizumab for patients with COVID-19 Tocilizumab probably results in little or no increase in the outcome of clinical improvement at D28 (RR 1.06, 95% CI 1.00 to 1.13; I2 = 40.9%; 7 RCTs, 5585 participants; absolute effect: 31 more with clinical improvement per 1000 (from 0 fewer to 67 more); moderate-certainty evidence). However, we cannot exclude that some subgroups of patients could benefit from the treatment. We did not obtain data for longer-term follow-up (≥ D60). The effect of tocilizumab on the proportion of participants with a WHO Clinical Progression Score of level of 7 or above is uncertain at D28 (RR 0.99, 95% CI 0.56 to 1.74; I2 = 64.4%; 3 RCTs, 712 participants; low-certainty evidence). We did not obtain data for longer-term follow-up (≥ D60). Tocilizumab reduces all-cause mortality at D28 compared to standard care alone or placebo (RR 0.89, 95% CI 0.82 to 0.97; I2 = 0.0%; 8 RCTs, 6363 participants; absolute effect: 32 fewer deaths per 1000 (from 52 fewer to 9 fewer); high-certainty evidence). The evidence suggests uncertainty around the effect on mortality at ≥ D60 (RR 0.86, 95% CI 0.53 to 1.40; I2 = 0.0%; 2 RCTs, 519 participants; low-certainty evidence). b. Safety of tocilizumab for patients with COVID-19 The evidence is very uncertain about the effect of tocilizumab on adverse events (RR 1.23, 95% CI 0.87 to 1.72; I2 = 86.4%; 7 RCTs, 1534 participants; very low-certainty evidence). Nevertheless, tocilizumab probably results in slightly fewer serious adverse events than standard care alone or placebo (RR 0.89, 95% CI 0.75 to 1.06; I2 = 0.0%; 8 RCTs, 2312 participants; moderate-certainty evidence). Sarilumab versus standard care alone or with placebo The evidence is uncertain about the effect of sarilumab on all-cause mortality at D28 (RR 0.77, 95% CI 0.43 to 1.36; 2 RCTs, 880 participants; low certainty), on all-cause mortality at ≥ D60 (RR 1.00, 95% CI 0.50 to 2.0; 1 RCT, 420 participants; low certainty), and serious adverse events (RR 1.17, 95% CI 0.77 to 1.77; 2 RCTs, 880 participants; low certainty). It is unlikely that sarilumab results in an important increase of adverse events (RR 1.05, 95% CI 0.88 to 1.25; 1 RCT, 420 participants; moderate certainty). However, an increase cannot be excluded No data were available for other critical outcomes. AUTHORS' CONCLUSIONS: On average, tocilizumab reduces all-cause mortality at D28 compared to standard care alone or placebo and probably results in slightly fewer serious adverse events than standard care alone or placebo. Nevertheless, tocilizumab probably results in little or no increase in the outcome clinical improvement (defined as hospital discharge or improvement measured by trialist-defined scales) at D28. The impact of tocilizumab on other outcomes is uncertain or very uncertain. With the data available, we were not able to explore heterogeneity. Individual patient data meta-analyses are needed to be able to identify which patients are more likely to benefit from this treatment. Evidence for an effect of sarilumab is uncertain and evidence for other anti-IL6 agents is unavailable. Thirty-nine RCTs of IL-6 blocking agents with no results are currently registered, of which nine are completed and seven trials were terminated with no results available. The findings of this review will be updated as new data are made available on the COVID-NMA platform (covid-nma.com).


Subject(s)
Antibodies, Monoclonal, Humanized/therapeutic use , COVID-19 Drug Treatment , Interleukin-6/antagonists & inhibitors , Aged , Antibodies, Monoclonal/therapeutic use , Antibodies, Monoclonal, Humanized/adverse effects , Bias , COVID-19/mortality , Disease Progression , Female , Humans , Male , Middle Aged , Multicenter Studies as Topic , Randomized Controlled Trials as Topic
20.
J Clin Epidemiol ; 129: 1-11, 2021 01.
Article in English | MEDLINE | ID: covidwho-1012425

ABSTRACT

OBJECTIVES: The aim of this study is to propose an approach for developing trustworthy recommendations as part of urgent responses (1-2 week) in the clinical, public health, and health systems fields. STUDY DESIGN AND SETTING: We conducted a review of the literature, outlined a draft approach, refined the concept through iterative discussions, a workshop by the Grading of Recommendations Assessment, Development and Evaluation Rapid Guidelines project group, and obtained feedback from the larger Grading of Recommendations Assessment, Development and Evaluation working group. RESULTS: A request for developing recommendations within 2 week is the usual trigger for an urgent response. Although the approach builds on the general principles of trustworthy guideline development, we highlight the following steps: (1) assess the level of urgency; (2) assess feasibility; (3) set up the organizational logistics; (4) specify the question(s); (5) collect the information needed; (6) assess the adequacy of identified information; (7) develop the recommendations using one of the 4 potential approaches: adopt existing recommendations, adapt existing recommendations, develop new recommendations using existing adequate systematic review, or develop new recommendations using expert panel input; and (8) consider an updating plan. CONCLUSION: An urgent response for developing recommendations requires building a cohesive, skilled, and highly motivated multidisciplinary team with the necessary clinical, scientific, and methodological expertise; adapting to shifting needs; complying with the principles of transparency; and properly managing conflicts of interest.


Subject(s)
Information Management , Practice Guidelines as Topic/standards , Consensus , Evidence-Based Medicine/standards , Evidence-Based Medicine/trends , Humans , Information Management/methods , Information Management/organization & administration , Outcome Assessment, Health Care/methods , Outcome Assessment, Health Care/organization & administration , Systematic Reviews as Topic
SELECTION OF CITATIONS
SEARCH DETAIL